Monotone approach to the Moreau-Yosida regularization

Michał Różański

We extend the classical Moreau-Yosida regularization to include potentials of monotone operators not necessarily being duality mappings. Let X be a normed space. Let $A: X \to X^*$ be a potential operator with the potential $F: X \to \mathbb{R}$. We define for $\varepsilon > 0$ the A-Moreau-Yosida regularization as follows

$$f_{\varepsilon}^{A}(u) = \inf_{v \in X} \left\{ \frac{1}{\varepsilon} F(u-v) + f(v) \right\}, \qquad u \in X.$$

The following assertions hold:

- a) $f_{\varepsilon}^{A}(u) = \frac{1}{\varepsilon}F(u u_{\varepsilon}) + f(u_{\varepsilon})$ for every $u \in X$,
- b) $f(u_{\varepsilon_1}) \leq f_{\varepsilon_1}^A(u) \leq f_{\varepsilon_2}^A(u) \leq f(u)$ for $u \in X$ and $0 < \varepsilon_2 < \varepsilon_1$,
- c) $u_{\varepsilon} \to u$ as $\varepsilon \to 0^+$ for $u \in \text{dom}(f)$,
- d) $\lim_{\varepsilon \to 0^+} f_{\varepsilon}^A(u) = f(u)$ for every $u \in X$.
- e) For $u \in \text{dom}(\partial f)$ there holds $A_{\varepsilon}(u) \rightharpoonup A_0(u) \in \partial f(u)$ as $\varepsilon \to 0^+$, where

$$A_0(u) := \operatorname*{argmin}_{\xi \in \partial f(u)} \{ \|\xi\| \}.$$

If X^* is uniformly convex, then $A_{\varepsilon}(u) \to A_0(u)$ as $\varepsilon \to 0^+$.

f) The mapping $\varepsilon \mapsto f_{\varepsilon}^A(u)$ is differentiable a.e. on $(0,\infty)$ with

$$\frac{\mathrm{d}f_{\varepsilon}^{A}(u)}{\mathrm{d}\varepsilon} = -\frac{1}{\varepsilon}F(u-u_{\varepsilon}).$$

g) If X is uniformly convex and A is continuous, then A_{ε} is continuous.

The Mosco convergence of such regularisation is also investigated.

References

- Bacho A., A generalization of the Moreau-Yosida regularization, J. Math. Anal. Appl. 524(2), Article 127139.
- [2] Barbu V., Precupanu T., Convexity and Optimization in Banach Spaces, Springer, Dordrecht 2012.
- [3] Yosida K., On the differentiability and the representation of one-parameter semi-group of linear operators, J. Math. Soc. Japan 1 (1948), 15–21.

Author:	Michał Różański
Affiliation:	Department of Mathematics, Silesian University of Technology
	Kaszubska 23, 44-100 Gliwice
e-mail:	Michal.Rozanski@polsl.pl